PHYSICAL / INORGANIC **CHEMISTRY**

DPP No. 24

Total Marks: 45

Max. Time: 49 min.

Topic: Thermodynamics (IInd Law)

Type of Questions		M.M., Min.
Single choice Objective ('-1' negative marking) Q.1 to Q.7	(3 marks, 3 min.)	[21, 21]
Multiple choice objective ('-1' negative marking) Q.8 to Q.9	(4 marks, 4 min.)	[8, 8]
Subjective Questions ('-1' negative marking) Q.10 to Q.13	(4 marks, 5 min.)	[16, 20]

- 1. (a) Which of the following processes represent an increase in entropy of the system:
 - (A) Polymerisation of ethene gas forming polyethene.
 - (B) SO₃ gas on heating breaks up to form SO₃ gas and O₃ gas.
 - (C) Condensation of dew on leaves in winters.
 - (D) Crystallisation of CuSO₄.5H₂O from solution.
 - (b) Which of the following reactions is associated with the most negative change in entropy?
 - (A) $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$
- (B) $C_2H_2(g) + 2H_2(g) \longrightarrow C_2H_g(g)$

(C) C (s) + $O_2 \longrightarrow CO_2(g)$

- (D) $2NO_2$ (g) $\longrightarrow N_2O_4$ (s)
- (c) In which of the following cases entropy decreases:
- (A) Solid changing to liquid

(B) Expansion of a gas

(C) Crystal dissolves

- (D) Polymerisation
- 2. The spontaneous nature of a reaction is impossible if:
 - (A) ΔH is +ve : ΔS in also +ve

(B) ΔH is -ve; ΔS is also -ve

(C) ΔH is -ve; ΔS in +ve

- (D) ΔH is +ve; ΔS in -ve
- 3. Two moles of an ideal diatomic gas at 27°C is made to expand reversibly and adiabatically to 4 times its initial volume. The change in entropy of the system during expansion is : (Given : R = 2 cal/K/mole, $\log_{10} 2$ $= 0.3, \log_{10} 3 = 0.48$
 - (A) 5.6 Cal/k
- (B) 11.2 Cal/k
- (C) 2.8 Cal/k
- (D) None of these
- 4. The entropy change when two moles of ideal monoatomic gas is heated from 200 to 300°C reversibly and isochorically is:

- (A) $3 R \ln \left(\frac{300}{200} \right)$ (B) $\frac{5}{2} R \ln \left(\frac{573}{473} \right)$ (C) $3 R \ln \left(\frac{573}{473} \right)$ (D) $\frac{3}{2} R \ln \left(\frac{573}{473} \right)$
- 5. What is the change in entropy when 2.5 g of water is heated from 27°C to 87°C? Assume that the heat capacity is constant (specific heat of water = 4.2 J/g-K, In (1.2) = 0.18)
 - (A) 16.6 J/K
- (B) 9 J/K
- (C) 34.02 J/K
- (D) 1.89 J/K
- 6. Calculate the total entropy change for the transition at 368 K of 1 mol of sulphur from the monoclinic to the rhombic solid state and $\Delta H = -436.8 \text{ J mol}^{-1}$ for the transition. Assume the surroundings to be an ice-water bath at 0°C:
 - $(A) 1.09 JK^{-1}$
- (B) $1.47 \, \text{JK}^{-1}$
- $(C) 0.22 \text{ JK}^{-1}$
- (D) 0.41 JK⁻¹
- 7. One mole of an ideal monoatomic gas at 27°C is subjected to a reversible isoentropic compression until final temperature reached to 327°C. If the initial pressure was 1.0 atm, then find the value of In P_o: (Given: $\ln 2 = 0.7$).
 - (A) 1.75 atm
- (B) 0.176 atm
- (C) 1.0395 atm
- (D) 2.0 atm

8.*	(a) For an isothermal free expansion of an ideal gas against vacuum, which of the following parameters
	have zero value:

- (A) q
- (B) ∆H
- (C) $\Delta S_{surr.}$
- (D) $\Delta S_{sys.}$

(b) For Isothermal expansion against constant external pressure of an ideal gas :

- (A) $\Delta S_{univ} > 0$
- (B) $\Delta S_{svs} > 0$
- (C) $\Delta S_{surr} < 0$
- (D) $\Delta S_{surr} = 0$

(c) For reversible adiabatic compression of an ideal gas:

- (A) $\Delta S_{univ} > 0$
- (B) $\Delta S_{sys} < 0$
- (C) $\Delta S_{surr} = 0$
- (D) $\Delta S_{sys} = 0$
- **9.*** For the process $H_2O(\ell)$ (1 bar, 373 K) \Longrightarrow $H_2O(g)$ (1 bar, 373 K), the correct set of thermodynamic parameters is :
 - (A) $\Delta G = -ve$
- (B) $\Delta S > 0$
- (C) $\Delta H > 0$
- (D) $\Delta G = 0$
- 10. A sample of certain mass of an ideal polyatomic gas is expanded against constant pressure of 1 atm adiabatically from volume 2 L, pressure 6 atm and temperature 300 K to state where its final volume is 8L. Then calculate entropy change (in J/K) in the process. (Neglect vibrational degrees of freedom)

 [1L atm = 100 J, log 2 = 0.3, log 3 = 0.48, log e = 2.3]
- 11. (a) The enthalpy of vapourisation of liquid diethyl ether is 26 kJ/mol at its boiling point (35°C). Calculate ΔS for conversion of : (i) liquid to vapour, and (ii) vapour to liquid at 35°C.
 - (b) Calculate the value of ΔG at 700 K for the reaction : nx \longrightarrow mB. Given that the value of $\Delta H = -113$ KJ/mol and $\Delta S = -145$ JK⁻¹ mol⁻¹.
- 12. (a) For the reaction, $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$; $\Delta H = -95.4 \text{ KJ}$ and $\Delta S = -198.3 \text{ JK}^{-1}$. Calculate the maximum temperature at which the reaction will proceed in forward direction.
 - (b) A certain reaction is non-spontaneous at 298 K. The entropy change during the reaction is 121 J/K. Is the reaction endothermic or exothermic? What is the minimum value of ΔH for the reaction?
- **13.** For oxidation of iron,

$$4Fe(s) + 3O_{2}(g) \longrightarrow 2Fe_{2}O_{3}(s)$$

entropy change is $-549.4~\text{JK}^{-1}~\text{mol}^{-1}$ at 298 K. Inspite of negative entropy change of this reaction. The reaction is spontaneous, why ? Justify your answer (Given : Δ ,H° = -1648~KJ/mol).

Answer Key

DPP No. #24

1. (a) (B) (b) (D) (c) (D)

. (D)

. (D)

4. (C)

5. (D)

6. ([

7. (A)

8.

(a) (A,B,C) (b) (A,B,C)

(c) (C,D)

(D)

9. (B,C,D)

10. 6 J/K

11. (a) (i) 84.41 JK⁻¹ mol⁻¹; (ii) -84.14 JK⁻¹ mol⁻¹

(6) (7,5,5)

c) (C,D

(b) -11.50 KJ/mol.

12. (a) 481 K.

(b) $\Delta H_{min} = T\Delta S = 36.06 \text{ KJ}.$

13.

 $\Delta S_{total} = 4980.6 \text{ JK}^{-1} \text{ mol}^{-1} > 0$

Hints & Solutions

PHYSICAL / INORGANIC CHEMISTRY

DPP No. # 24

- (a) In polymerisation of ethene gas forming polyethene and condensation of dew on leaves in winters, entropy of the system decreases.
 - (b) ∆n_a is most ve
 - (c) Polymerisation leads to more ordered structure.
- 3. For a reversible adiabatic process, $\Delta S_{sys} = \Delta S_{surr} = \Delta S_{univ} = 0$
- 4. $\Delta S_{gas} = n C_{V,m} ln \frac{T_2}{T_1} = 2 \times \frac{3}{2} R ln \frac{573}{473} = 3R ln \left(\frac{573}{473}\right).$
- 5. $\Delta S = mS \text{ in } \frac{T_2}{T_1} = 2.5 \times 4.2 \text{ in } \left(\frac{360}{300}\right) = 1.89 \text{ J/K}$
- 6. $\Delta S_{\text{(system)}} = \frac{1 \times -436.8}{368} = -1.19 \text{ JK}^{-1}$

The ice-water bath absorbs the 436.8 J mol⁻¹ at temperature 273 K.

$$\triangle S_{\text{surrounding}} = \frac{1 \times 436.8}{273} = 1.6 \text{ JK}^{-1} \text{ and } \Delta S_{\text{(universe)}} = -1.19 + 1.6 = 0.41 \text{ JK}^{-1}$$

7. (A) For isoentropic process
$$\Delta S_{\text{system}} = 0$$

∴
$$nC_{p, m} \ln \frac{T_2}{T_1} + nR \ln \frac{P_1}{P_2} = 0 \implies \ln (P_2) = \frac{5}{2} \times \ln \left(\frac{600}{300}\right)$$

= 1.75 atm.

8. (a) For isothermal free expansion of an ideal gas,
$$\Delta T = 0$$
 Therefore, $\Delta H = \Delta E = 0$

Also, W = 0 (since
$$P_{ext} = 0$$
)

Therefore, from first law, q = 0. Therefore, $\Delta S_{surr} = 0$.

Since gas is expanding, ΔS_{svs} . > 0.

$$\Delta H > 0$$

 $\Delta G = 0$

10.
$$W = -P_{ext} (V_f - V_f) = -(1 \text{ atm}) (8 - 2) L$$

= -6 L atm
as q = 0 so

$$\Delta E = W = n \left(\frac{6}{2}R\right) \left(\frac{P_f V_f}{nR} - \frac{P_i V_i}{nR}\right)$$
 Here $\Delta E = nC_v \Delta T$
3 (8 P. – 12) = –6

$$8 P_r = 12 - \frac{6}{3} = 10$$
 \Rightarrow $P_r = \frac{5}{4} atm$

so,
$$\frac{T_f}{T_i} = \frac{\frac{5}{4} \times 3}{6 \times 2} = \frac{10}{12}$$

so
$$\Delta S = 3 \frac{12}{300} \ln \left(\frac{10}{12} \right) + \frac{12}{300} \ln 8$$

$$= \frac{3 \times 12}{300} \ln \left(\frac{5}{6} \times 2 \right) = \frac{12}{100} \ln \left(\frac{5}{3} \right) \times 100 \text{ J}$$

$$= 12 (\ln 5 - \ln 3) = 12 \times 2.3 \times (0.7 - 0.48)$$

$$= 12 \times 2.3 \times 0.22 = 6.072 \text{ J/K}$$

Ans. 6 J/K

11. (a) (i)
$$\Delta S_{\text{vap.}} = \frac{\Delta H_{\text{vap.}}}{T} = \frac{26 \times 10^3}{308} = 84.41 \text{ JK}^{-1} \text{ mol}^{-1}.$$
(ii) $\Delta S_{\text{cond}} = \frac{\Delta H_{\text{cond}}}{T} = -84.41 \text{ JK}^{-1} \text{ mol}^{-1}.$

(b) Using
$$\Delta G = \Delta H - T\Delta S = -11.50 \text{ KJ/mol.}$$

12. (a)
$$T < \frac{\Delta H}{\Delta S} = \frac{-95.4 \times 10^3}{-198.3} = 481.0 \text{ K. (Since } \Delta S \text{ and } \Delta H \text{ both are negative)}$$

(b) For
$$\Delta H_{min}$$
, $\Delta G = 0$

$$\therefore$$
 $\Delta H_{min} = T\Delta S = 36.06 \text{ KJ}.$

13. Spontaneity of a reaction is decideded by

$$\Delta S_{total} = (\Delta S_{Sys} + \Delta S_{surr.}) > 0$$

$$\Delta S_{\text{surr}} = \frac{-1648 \times 10^3 \text{ J/mol}}{298} = 5530 \text{ JK}^{-1} \text{ mol}^{-1}$$

$$\triangle S_{total} = 4980.6 \text{ JK}^{-1} \text{ mol}^{-1} > 0$$
 (Hence, spontaneous).

